Aerodynamic Flutter and Flight Surface Actuation Conferences uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • This paper proposes a novel form of impedance control in order to reduce the effects of aerodynamic flutter on a flight surface actuator. The forces generated by small amplitude flutter were studied on an electrohydrostatic actuator (EHA). The effects of flutter were modeled and analyzed. Through analysis, it was found that in EHA systems, two parameters would impact the response of flutter: damping (B) of the mechanical load, and the effective bulk modulus of the hydraulic oil (βe). These can be actively controlled as proposed here in order to provide variable impedance. The results of changing these variables are discussed and presented here.

publication date

  • January 1, 2007