Highly Asymmetric Phase Behaviors of Polyhedral Oligomeric Silsesquioxane-Based Multiheaded Giant Surfactants Academic Article uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • This work reports the molecular design, synthesis, and systematic study on the bulk self-assembly behaviors of three series of polyhedral oligomeric silsesquioxane (POSS)-based multiheaded giant surfactants XDPOSS-PSn (X = 2, 3, and 4), which are composed of two, three, or four hydrophilic hydroxyl-group-functionalized DPOSS cages attached via one junction point to a hydrophobic polystyrene (PS) chain. These series of hybrid polymeric amphiphiles with precisely defined chemical structure and controllable molecular architecture are synthesized by the sequential usage of "click" reactions. By tuning molecular weights of the PS tail, we established full phase diagrams of XDPOSS-PSn as a function of the volume fractions of PS chains (VfPS). We found that the self-assembled structures were greatly influenced by the molecular architecture. Strikingly, our results showed that the lamellar morphology, which usually existed at relatively symmetric compositions in common diblock copolymers, became the thermodynamically stable phase in the 3DPOSS-PSn and 4DPOSS-PSn samples even at an asymmetric composition up to VfPS = 0.842, with the ratio between the thicknesses of PS and DPOSS lamellae up to 5.32. This unusual phenomenon induced by molecular architectural variation could be explained by the large cross-sectional area of DPOSS cages at the nanophase-separated domain interface and high elastic deformation energy of clustered DPOSS cages which have relatively rigid conformation. The unique bulk self-assembly behaviors in our POSS-based multiheaded giant surfactants provide insights in developing hybrid nanomaterials toward unconventional nanostructures.


  • Huang, Mingjun
  • Yue, Kan
  • Huang, Jiahao
  • Liu, Chang
  • Zhou, Zhe
  • Wang, Jing
  • Wu, Kan
  • Shan, Wenpeng
  • Shi, An-chang
  • Cheng, Stephen ZD

publication date

  • February 27, 2018