Direct Measurement of the Key Ec.m.=456  keV Resonance in the Astrophysical Ne19(p,γ)Na20 Reaction and Its Relevance for Explosive Binary Systems Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We have performed a direct measurement of the ^{19}Ne(p,γ)^{20}Na reaction in inverse kinematics using a beam of radioactive ^{19}Ne. The key astrophysical resonance in the ^{19}Ne+p system has been definitely measured for the first time at E_{c.m.}=456_{-2}^{+5}  keV with an associated strength of 17_{-5}^{+7}  meV. The present results are in agreement with resonance strength upper limits set by previous direct measurements, as well as resonance energies inferred from precision (^{3}He, t) charge exchange reactions. However, both the energy and strength of the 456 keV resonance disagree with a recent indirect study of the ^{19}Ne(d, n)^{20}Na reaction. In particular, the new ^{19}Ne(p,γ)^{20}Na reaction rate is found to be factors of ∼8 and ∼5 lower than the most recent evaluation over the temperature range of oxygen-neon novae and astrophysical x-ray bursts, respectively. Nevertheless, we find that the ^{19}Ne(p,γ)^{20}Na reaction is likely to proceed fast enough to significantly reduce the flux of ^{19}F in nova ejecta and does not create a bottleneck in the breakout from the hot CNO cycles into the rp process.

authors

  • Wilkinson, R
  • Lotay, G
  • Lennarz, A
  • Ruiz, C
  • Christian, G
  • Akers, C
  • Catford, WN
  • Chen, Alan
  • Connolly, D
  • Davids, B
  • Hutcheon, DA
  • Jedrejcic, D
  • Laird, AM
  • Martin, L
  • McNeice, E
  • Riley, J
  • Williams, M

publication date

  • December 15, 2017