STrategically Acquired Gradient Echo (STAGE) imaging, part I: Creating enhanced T1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping Journal Articles uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • PURPOSE: To provide whole brain grey matter (GM) to white matter (WM) contrast enhanced T1W (T1WE) images, multi-echo quantitative susceptibility mapping (QSM), proton density (PD) weighted images, T1 maps, PD maps, susceptibility weighted imaging (SWI), and R2* maps with minimal misregistration in scanning times <5min. METHODS: Strategically acquired gradient echo (STAGE) imaging includes two fully flow compensated double echo gradient echo acquisitions with a resolution of 0.67×1.33×2.0mm3 acquired in 5min for 64 slices. Ten subjects were recruited and scanned at 3 Tesla. The optimum pair of flip angles (6° and 24° with TR=25ms at 3T) were used for both T1 mapping with radio frequency (RF) transmit field correction and creating enhanced GM/WM contrast (the T1WE). The proposed T1WE image was created from a combination of the proton density weighted (6°, PDW) and T1W (24°) images and corrected for RF transmit field variations. Prior to the QSM calculation, a multi-echo phase unwrapping strategy was implemented using the unwrapped short echo to unwrap the longer echo to speed up computation. R2* maps were used to mask deep grey matter and veins during the iterative QSM calculation. A weighted-average sum of susceptibility maps was generated to increase the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). RESULTS: The proposed T1WE image has a significantly improved CNR both for WM to deep GM and WM to cortical GM compared to the acquired T1W image (the first echo of 24° scan) and the T1MPRAGE image. The weighted-average susceptibility maps have 80±26%, 55±22%, 108±33% SNR increases across the ten subjects compared to the single echo result of 17.5ms for the putamen, caudate nucleus, and globus pallidus, respectively. CONCLUSIONS: STAGE imaging offers the potential to create a standardized brain imaging protocol providing four pieces of quantitative tissue property information and multiple types of qualitative information in just 5min.


  • Chen, Yongsheng
  • Liu, Saifeng
  • Wang, Yu
  • Kang, Yan
  • Haacke, Mark

publication date

  • February 2018

has subject area