Decreased susceptibility of major veins in mild traumatic brain injury is correlated with post-concussive symptoms: A quantitative susceptibility mapping study Academic Article uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • Cerebral venous oxygen saturation (SvO2) is an important biomarker of brain function. In this study, we aimed to explore the relative changes of regional cerebral SvO2 among axonal injury (AI) patients, non-AI patients and healthy controls (HCs) using quantitative susceptibility mapping (QSM). 48 patients and 32 HCs were enrolled. The patients were divided into two groups depending on the imaging based evidence of AI. QSM was used to measure the susceptibility of major cerebral veins. Nonparametric testing was performed for susceptibility differences among the non-AI patient group, AI patient group and healthy control group. Correlation was performed between the susceptibility of major cerebral veins, elapsed time post trauma (ETPT) and post-concussive symptom scores. The ROC analysis was performed for the diagnostic efficiency of susceptibility to discriminate mTBI patients from HCs. The susceptibility of the straight sinus in non-AI and AI patients was significantly lower than that in HCs (P < 0.001, P = 0.004, respectively, Bonferroni corrected), which may indicate an increased regional cerebral SvO2 in patients. The susceptibility of the straight sinus in non-AI patients positively correlated with ETPT (r = 0.573, P = 0.003, FDR corrected) while that in AI patients negatively correlated with the Rivermead Post Concussion Symptoms Questionnaire scores (r = - 0.582, P = 0.018, FDR corrected). The sensitivity, specificity and AUC values of susceptibility for the discrimination between mTBI patients and HCs were 88%, 69% and 0.84. In conclusion, the susceptibility of the straight sinus can be used as a biomarker to monitor the progress of mild TBI and to differentiate mTBI patients from healthy controls.


  • Chai, Chao
  • Guo, Rui
  • Zuo, Chao
  • Fan, Linlin
  • Liu, Saifeng
  • Qian, Tianyi
  • Haacke, Mark
  • Xia, Shuang
  • Shen, Wen

publication date

  • 2017