Home
Scholarly Works
Lagrangian Optimization of Two-Description Scalar...
Conference

Lagrangian Optimization of Two-Description Scalar Quantizers

Abstract

In this paper, we study the problem of optimal design of balanced two-description fixed-rate scalar quantizer (2DSQ) under the constraint of convex codecells. Using a graph-based approach to model the problem, we show that the minimum expected distortion of the 2DSQ is a convex function of the number of codecells in the side quantizers. This property allows the problem to be solved by Lagrangian minimization for which the optimal Lagrangian multiplier exists. Given a trial multiplier, we exploit a monotonicity of the objective function, and develop a simple and fast dynamic programming technique to solve the parameterized problem. To further improve the algorithm efficiency, we propose an RD-guided search strategy to find the optimal Lagrangian multiplier. In our experiments on distributions of interest for signal compression applications the proposed algorithm improves the speed of the fastest algorithm so far, by a factor of $O(K/\log K)$, where $K$ is the number of codecells in each side quantizer. We also assess the impact on the optimality of the convex codecell constraint. Using a published performance analysis of 2DSQ at high rates, we show that asymptotically this constraint does not preclude optimality for $L_2$ distortion measure, when channels have a higher than 0.12 loss rate.

Authors

Dumitrescu S; Wu X

Volume

53

Pagination

pp. 3990-4012

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Publication Date

November 1, 2007

DOI

10.1109/tit.2007.907498

Conference proceedings

IEEE Transactions on Information Theory

Issue

11

ISSN

0018-9448

Contact the Experts team