Correlated digital back propagation based on perturbation theory Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We studied a simplified digital back propagation (DBP) scheme by including the correlation between neighboring signal samples. An analytical expression for calculating the correlation coefficients is derived based on a perturbation theory. In each propagation step, nonlinear distortion due to phase-dependent terms in the perturbative expansion are ignored which enhances the computational efficiency. The performance of the correlated DBP is evaluated by simulating a single-channel single-polarization fiber-optic system operating at 28 Gbaud, 32-quadrature amplitude modulation (32-QAM), and 40 × 80 km transmission distance. As compared to standard DBP, correlated DBP reduces the total number of propagation steps by a factor of 10 without performance penalty. Correlated DBP with only 2 steps per link provides about one dB improvement in Q-factor over linear compensation.

publication date

  • June 1, 2015