Home
Scholarly Works
Procedure to decouple reflectance and...
Journal article

Procedure to decouple reflectance and down-shifting effects in luminescent down-shifting enhanced photovoltaics.

Abstract

The down-shifting (DS) process is a purely optical approach used to improve the short-wavelength response of a solar cell by shifting high-energy photons to the visible range, which can be more efficiently absorbed by the solar cell. In addition to the DS effect, coupling a DS layer to the top surface of a solar cell results in a change in surface reflectance. The two effects are intermixed and therefore, usually reported as a single effect. Here we propose a procedure to decouple the two effects. Analytical equations are derived to decouple the two effects, that consider the experimentally measured quantum efficiency of the solar cell with and without the DS layer, in addition to transfer matrix simulations of the parasitic absorption in the device structure. In this work, an overall degradation of 0.46 mA/cm2 is observed when adding a DS layer composed of silicon nanocrystals embedded in a quartz matrix to a silicon solar cell of 11% baseline efficiency. To fully understand the contribution from each effect, the surface reflectance and DS effects are decoupled and quantified using the described procedure. We observe an enhancement of 0.27 mA/cm2 in short-circuit current density due to the DS effect, while the surface reflectance effect leads to a degradation of 0.73 mA/cm2 in short-circuit current density.

Authors

Gabr AM; Walker AW; Wilkins MM; Kleiman R; Hinzer K

Journal

Optics Express, Vol. 25, No. 12, pp. a530–a538

Publisher

Optica Publishing Group

Publication Date

June 12, 2017

DOI

10.1364/oe.25.00a530

ISSN

1094-4087

Contact the Experts team