Simultaneous detection of resolved glutamate, glutamine, and γ-aminobutyric acid at 4T
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
A new approach is introduced to simultaneously detect resolved glutamate (Glu), glutamine (Gln), and gamma-aminobutyric acid (GABA) using a standard STEAM localization pulse sequence with the optimized sequence timing parameters. This approach exploits the dependence of the STEAM spectra of the strongly coupled spin systems of Glu, Gln, and GABA on the echo time TE and the mixing time TM at 4 T to find an optimized sequence parameter set, i.e., {TE, TM}, where the outer-wings of the Glu C4 multiplet resonances around 2.35 ppm, the Gln C4 multiplet resonances around 2.45 ppm, and the GABA C2 multiplet resonance around 2.28 ppm are significantly suppressed and the three resonances become virtual singlets simultaneously and thus resolved. Spectral simulation and optimization were conducted to find the optimized sequence parameters, and phantom and in vivo experiments (on normal human brains, one patient with traumatic brain injury, and one patient with brain tumor) were carried out for verification. The results have demonstrated that the Gln, Glu, and GABA signals at 2.2-2.5 ppm can be well resolved using a standard STEAM sequence with the optimized sequence timing parameters around {82 ms,48 ms} at 4 T, while the other main metabolites, such as N-acetyl aspartate (NAA), choline (tCho), and creatine (tCr), are still preserved in the same spectrum. The technique can be easily implemented and should prove to be a useful tool for the basic and clinical studies associated with metabolism of Glu, Gln, and/or GABA.