Home
Scholarly Works
On the uniform convergence of the Chebyshev...
Conference

On the uniform convergence of the Chebyshev interpolants for solitons

Abstract

We discuss polynomial interpolation and derive sufficient conditions for the uniform convergence of Chebyshev interpolants for different classes of functions. Rigorous results are illustrated with a number of examples which include solitons on an infinite line with algebraic, exponential and Gaussian decay rates. Suitable mappings of the real line to the interval [−1,1] are considered for each class of solutions.

Authors

Chugunova M; Pelinovsky D

Volume

80

Pagination

pp. 794-803

Publisher

Elsevier

Publication Date

December 1, 2009

DOI

10.1016/j.matcom.2009.08.034

Conference proceedings

Mathematics and Computers in Simulation

Issue

4

ISSN

0378-4754

Contact the Experts team