Mercury Concentrations in Arctic Food Fishes Reflect the Presence of Anadromous Arctic Charr (Salvelinus alpinus), Species, and Life History
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Single-spawning (semelparous) anadromous fishes are known to transport contaminants from marine to freshwater habitats, but little research has been conducted on contaminant biotransport by multiple-spawning (iteroparous) anadromous fishes. We examined the effect of iteroparous, anadromous Arctic charr (Salvelinus alpinus) on mercury concentrations ([Hg]) in freshwater biota and compared [Hg] between species and life history types of Arctic charr and lake trout (Salvelinus namaycush). Data from six lakes and one coastal marine area in the Arctic territory of Nunavut, Canada, indicated that 1) lake trout had significantly lower [Hg] in lakes where anadromous Arctic charr were present; 2) [Hg] was significantly lower in recently discovered anadromous lake trout than in resident lake trout; and 3) regardless of life history, Arctic charr had significantly lower [Hg] than lake trout. These differences were explained by fish condition, age-at-size, and C:N. Biomagnification of Hg, measured as log(10)[Hg]-delta(15)N slopes, did not differ between lakes with and without anadromous Arctic charr but was significantly higher in freshwater food webs ( approximately 0.2) than in the marine food web (0.08). Some biomagnification estimates were affected by correction for fish age and size. In contrast to semelparous anadromous species, biotransport of Hg by anadromous Arctic charr appears to be offset by increased growth of freshwater fishes.