Home
Scholarly Works
Ultrasound RF Time Series for Classification of...
Journal article

Ultrasound RF Time Series for Classification of Breast Lesions

Abstract

This work reports the use of ultrasound radio frequency (RF) time series analysis as a method for ultrasound-based classification of malignant breast lesions. The RF time series method is versatile and requires only a few seconds of raw ultrasound data with no need for additional instrumentation. Using the RF time series features, and a machine learning framework, we have generated malignancy maps, from the estimated cancer likelihood, for decision support in biopsy recommendation. These maps depict the likelihood of malignancy for regions of size 1 mm(2) within the suspicious lesions. We report an area under receiver operating characteristics curve of 0.86 (95% confidence interval [CI]: 0.84%-0.90%) using support vector machines and 0.81 (95% CI: 0.78-0.85) using Random Forests classification algorithms, on 22 subjects with leave-one-subject-out cross-validation. Changing the classification method yielded consistent results which indicates the robustness of this tissue typing method. The findings of this report suggest that ultrasound RF time series, along with the developed machine learning framework, can help in differentiating malignant from benign breast lesions, subsequently reducing the number of unnecessary biopsies after mammography screening.

Authors

Uniyal N; Eskandari H; Abolmaesumi P; Sojoudi S; Gordon P; Warren L; Rohling RN; Salcudean SE; Moradi M

Journal

IEEE Transactions on Medical Imaging, Vol. 34, No. 2, pp. 652–661

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Publication Date

February 1, 2015

DOI

10.1109/tmi.2014.2365030

ISSN

0278-0062

Contact the Experts team