A partial functions version of Church's simple theory of types Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractChurch's simple theory of types is a system of higher-order logic in which functions are assumed to be total. We present in this paper a version of Church's system called PF in which functions may be partial. The semantics of PF, which is based on Henkin's general-models semantics, allows terms to be nondenoting but requires formulas to always denote a standard truth value. We prove that PF is complete with respect to its semantics. The reasoning mechanism in PF for partial functions corresponds closely to mathematical practice, and the formulation of PF adheres tightly to the framework of Church's system.

publication date

  • September 1990