Electrophoretic deposition of organic–inorganic nanocomposites Conferences uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Electrochemical deposition methods have been developed for the fabrication of organic - inorganic nanocomposite coatings. The methods are based on electrophoretic deposition of ceramic nanoparticles and polymers.

    EPD method has been developed for the deposition of nanostructured TiO2 films using new dispersing agents. The stabilization and charging of the nanoparticles in suspensions was achieved using these organic molecules, which belong to catecholate and salicylate families. Anodic deposition was achieved using caffeic acid, 2,3-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid and 5-sulfosalicylic acid. Cathodic deposition was performed using 2,4 dihydroxycinnamic acid, p-coumaric acid and trans cinnamic acid. The deposition yield has been studied as a function of the additive concentration and deposition time. The deposition mechanism has been investigated. The fundamental adsorption mechanism is based on the complexation of metal ions at the surfaces of oxide nanoparticles. The method enabled the co-deposition of TiO2 and other oxides and the formation of composite films.

    Electrophoretic deposition method has been used for the deposition of TiO2 nanoparticles modified with organic dyes. Alizarin red, alizarin yellow, pyrocatechol violet and Aurintricarboxylic acid dyes were used for the dispersion and charging of TiO2. The microstructures of the nanocomposite coatings were studied. The deposition yield was investigated under a variety of conditions. Obtained results could pave the way for the fabrication of dye-sensitized TiO2 films.

    EPD method has also been developed for the fabrication of (Poly[3-(3-N,N-diethylaminopropoxy)thiophene]) PDAOT-TiO2, (polyethylenimine) PEI-TiO2 and PEI-hydrotalcite composite films. The microstructures of the nanocomposite coatings were studied by Scanning Electron Microscopy, Thermogravimetric Analysis, which showed the co-deposition of inorganic nanoparticles and organic polymer. Electrochemical test of the composite film has been conducted. The results showed that PEI film provided corrosion protection of the stainless steel substrates.

publication date

  • December 1, 2006