Shake Table Seismic Performance Assessment of Lightly Reinforced Concrete Block Shear Walls Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • This thesis reports on shake table tests on fully-grouted reinforced masonry (RM) shear walls. The test walls covers a range of design parameters to facilitate benchmarking, a thorough performance investigation, and calibration of numerical models as well as development of fragility curves within the context of Performance Based Seismic Design (PBSD). The details of the experimental program undertaken, including general observations in terms of cracking patterns and failure modes of the tested walls and the results on the lateral strength, hysteretic response, dynamic properties, and the contribution of different displacement components to the response of the walls, are presented. More detailed analyses include seismic performance quantification of the walls in terms of inelastic behaviour characteristics, various energy components, and the effective dynamic properties of the tested walls. The analysis is concluded with development of simplified nonlinear response history analytical models and seismic fragility assessment tools for the tested walls. In general, the study results indicated that the displacement ductility capacity of the RM walls and their capability to dissipate energy through plastic hinging are higher than what is currently recognized by the National Building Code of Canada (NBCC). The fragility assessment study further indicated that similar walls are expected to conform to the current drift limits of the NBCC even at high seismic regions in Canada. The results of this study are expected to contribute to the growing Seismic Performance Database (SPD) of RM Seismic Force Resisting System (SFRS), and to the understanding of the lightly reinforced masonry wall system behaviour.

publication date

  • February 2015