Effects of polyethylene glycol and magnesium sulfate administration on clinically relevant neurological outcomes after spinal cord injury in the rat Journal Articles uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • AbstractThe purpose of this study was to determine the long‐term effects of polyethylene glycol (PEG) and magnesium sulfate (MgSO4) on clinically relevant motor, sensory, and autonomic outcomes after spinal cord injury (SCI). Rats were injured by clip compression (50 g; T4) and treated 15 min and 6 hr postinjury intravenously (tail vein) with PEG (1 g/kg, 30% w/w in saline; n = 11), MgSO4 (300 mg/kg; n = 5), PEG + MgSO4 (n = 6), or saline (n = 10). Behavioral testing lasted for 6 weeks, followed by histological analysis of the spinal cord. Both PEG and MgSO4 resulted in enhanced locomotor recovery and lower susceptibility to neuropathic pain (mechanical allodynia) compared with saline. At 6 weeks, BBB scores were 7.3 ± 0.2, 7.7 ± 0.4, and 6.4 ± 0.6 in PEG‐treated, MgSO4‐treated, and saline‐treated control groups, respectively. Likewise, at 6 weeks PEG‐, MgSO4‐, and saline‐treated control animals showed 3.5 ± 0.4, 2.8 ± 0.9, and 5.0 ± 0.5 avoidance responses to at‐level touch, respectively. PEG + MgSO4 improved locomotor recovery and reduced pain but did not provide additional benefit compared with either treatment alone. Neither treatment, nor their combination, attenuated mean arterial pressure (MAP) increases during autonomic dysreflexia. However, saline‐treated controls had significantly lower resting MAP than PEG‐treated rats and tended to have lower resting MAP than MgSO4‐treated rats 6 weeks postinjury. MgSO4 treatment and PEG + MgSO4 treatment resulted in significant increases in dorsal myelin sparing, and the latter resulted in significant reductions in lesion volume, compared with saline‐treated controls. Furthermore, mean lesion volumes correlated negatively with the corresponding mean BBB scores and positively with the corresponding mean pain scores. In conclusion, both PEG and MgSO4 enhanced long‐term clinical outcomes after SCI. © 2007 Wiley‐Liss, Inc.


  • Ditor, David
  • John, Sunil M
  • Roy, Josee
  • Marx, Jeffrey C
  • Kittmer, Colin
  • Weaver, Lynne C

publication date

  • May 15, 2007

has subject area