Surface versus bulk activity of lysozyme deposited on hydrogel contact lens materials in vitro Conference Paper uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • PURPOSE: To determine and compare the levels of surface versus bulk active lysozyme deposited on several commercially available hydrogel contact lens materials. METHODS: Hydrogel contact lens materials [polymacon, omafilcon A, nelfilcon A, nesofilcon A, ocufilcon and etafilcon A with polyvinylpyrrolidone (PVP)] were incubated in an artificial tear solution for 16 h. Total activity was determined using a standard turbidity assay. The surface activity of the deposited lysozyme was determined using a modified turbidity assay. The amount of active lysozyme present within the bulk of the lens material was calculated by determining the difference between the total and surface active lysozyme. RESULTS: The etafilcon A materials showed the highest amount of total lysozyme activity (519 ± 8 μg/lens, average of Moist and Define), followed by the ocufilcon material (200 ± 5 μg/lens) and these two were significantly different from each other (p < 0.05). The amount of surface active lysozyme on etafilcon and ocufilcon lens materials was significantly higher than that found on all other lenses (p < 0.05). There was no active lysozyme quantified in the bulk of the nelfilcon material, as all of the active lysozyme was found on the surface (1.7 ± 0.3 μg/lens). In contrast, no active lysozyme was quantified on the surface of polymacon, with all of the active lysozyme found in the bulk of the lens material (0.6 ± 0.6 μg/lens). CONCLUSIONS: The surface and bulk activity of lysozyme deposited on contact lenses is material dependent. Lysozyme deposited on ionic, high water content lens materials such as etafilcon A show significantly higher surface and bulk activity than many other hydrogel lens materials.

authors

  • Omali, Negar Babaei
  • Subbaraman, Lakshman N
  • Heynen, Miriam
  • Ng, Alan
  • Coles-Brennan, Chantal
  • Fadli, Zohra
  • Jones, Lyndon

publication date

  • August 2018