Novel in vitro method to determine pre-lens tear break-up time of hydrogel and silicone hydrogel contact lenses
Conferences
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
PURPOSE: To develop an in vitro model to determine pre-lens non-invasive break-up time (NIBUT) and to subsequently use this method to compare the NIBUT over contemporary daily disposable (DD) contact lenses (CL). METHODS: Three silicone hydrogel (SH) and two conventional hydrogel (CH) DD CLs were incubated in an artificial tear solution (ATS). A model blink cell (MBC) was utilised to mimic intermittent air exposure. CLs were repeatedly submerged for 3 seconds (s) and exposed to air for 10 s over periods of 2, 6, 12, and 16 hours (h). NIBUTs (n = 4) were determined out of the blister pack (T0) and at the end of each incubation period. RESULTS: Overall, nesofilcon A showed the longest NIBUTs (p < 0.001). At T0, CHs revealed significantly longer NIBUTs (p ≤ 0.001) than SHs. After 2 h, nesofilcon A showed the longest NIBUT, however, this was only statistically significant compared with delefilcon A (p ≤ 0.001). After 6 h, nesofilcon A NIBUT was significantly longer than all other CLs (p ≤ 0.001). Etafilcon A showed a significantly longer NIBUT (p ≤ 0.001) after 12 h and delefilcon A had the longest NIBUT (p ≤ 0.001) after 16 h. Statistically significant (p ≤ 0.05) changes of NIBUT within the lens materials varied between time points. After 16 h, all CLs showed significant reductions in NIBUTs (p ≤ 0.001) in comparison to T0. CONCLUSION: NIBUT values reduced gradually over time and varying levels of deposition impacted measured pre-lens NIBUTs. While NIBUT of CH materials are longer immediately out of the blister pack, after tear film exposure, the NIBUTs obtained using this methodology became very similar.