Effect of anti-TGF-β2 surface modification of polydimethylsiloxane on lens epithelial cell markers of posterior capsule opacification Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Posterior capsule opacification is the most common complication of cataract surgery. Lens epithelial cells remaining in the capsular bag following surgery can undergo epithelial-to-mesenchymal transition and migrate from the anterior to the posterior capsule, leading to fibrosis, capsular wrinkling, and ultimately vision loss. Transforming growth factor-beta 2 has been shown to play a major role in epithelial-to-mesenchymal transition. Covalent tethering of anti-transforming growth factor-beta 2 to the surface of the intraocular lens material may inhibit epithelial-to-mesenchymal transition and the subsequent events, thus leading to a reduction in posterior capsule opacification. In this work, the antibody was tethered to the surface of polydimethylsiloxane as a model lens material via a poly(ethylene) glycol spacer. Surface characterization using a variety of methods demonstrated successful modification. The surface density of the anti-transforming growth factor-beta 2 was approximately 0.5 µg/cm2. The presence of transforming growth factor-beta 2 in cell culture medium stimulated production of extracellular matrix components such as collagen, fibronectin, laminin, and the fibrotic marker α-smooth muscle actin, by HLE-B3 cells. These effects were decreased but not completely eradicated by the presence of the anti-transforming growth factor-beta 2 antibody on the polydimethylsiloxane surface. These results suggest that surface modification with appropriate antifibrotic molecules has the potential to modulate cellular changes following cataract surgery and lead to a reduction in posterior capsule opacification.

publication date

  • November 2013