Home
Scholarly Works
Development of a rapid quantitative PCR assay for...
Journal article

Development of a rapid quantitative PCR assay for direct detection and quantification of culturable and non-culturable Escherichia coli from agriculture watersheds

Abstract

A real-time quantitative polymerase chain reaction (Q-PCR) assay was developed for detecting and quantifying Escherichia coli in water samples from agricultural watersheds. The assay included optimization of DNA extraction and purification from water samples, and Q-PCR amplification conditions using newly designed species-specific oligonucleotide primers derived from conserved flanking regions of the 16S rRNA gene, the internal transcribed spacer region (ITS) and the 23S rRNA gene. The assay was optimized using a pure culture of E. coli with known quantities spiked into autoclaved agricultural water samples. The optimized assay was capable of a minimum quantification limit of 10 cells/ml of E. coli in the spiked agricultural water samples. A total of 121 surface water samples from three agricultural watersheds across Canada were analyzed, and results were compared with conventional culture-based enumerations of E. coli. The Q-PCR assay revealed significantly higher numbers of E. coli in water samples than the culture-based assay in each agricultural watershed. The new Q-PCR assay can facilitate the quantification of E. coli in a single water sample in < 3 h, including melt curve analysis, across a range of agricultural water quality conditions.

Authors

Khan IUH; Gannon V; Kent R; Koning W; Lapen DR; Miller J; Neumann N; Phillips R; Robertson W; Topp E

Journal

Journal of Microbiological Methods, Vol. 69, No. 3, pp. 480–488

Publisher

Elsevier

Publication Date

June 1, 2007

DOI

10.1016/j.mimet.2007.02.016

ISSN

0167-7012

Contact the Experts team