Confinement effects in antiferromagnets Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Phase equilibrium in confined Ising antiferromagnets was studied as a function of the coupling (v) and a magnetic field (h) at the surfaces, in the presence of an external field H. The ground state properties were calculated exactly for symmetric boundary conditions and nearest-neighbor interactions, and a full zero-temperature phase diagram in the plane v-h was obtained for films with symmetry-preserving surface orientations. The ground-state analysis was extended to the H-T plane using a cluster-variation free energy. The study of the finite-T properties (as a function of v and h) reveals the close interdependence between the surface and finite-size effects and, together with the ground-state phase diagram, provides an integral picture of the confinement in anisotropic antiferromagnets with surfaces that preserve the symmetry of the order parameter.

publication date

  • July 1, 2000