A comparison of host-defense peptides in skin secretions of female Xenopus laevis×Xenopus borealis and X. borealis×X. laevis F1 hybrids
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Peptidomic analysis was used to compare the diversity of host-defense peptides in norepinephrine-stimulated skin secretions from laboratory-generated female F1 hybrids of Xenopus laevis and Xenopus borealis (Pipidae). Skin secretions of hybrids with maternal X. laevis (XLB) contained 12 antimicrobial peptides (AMPs), comprising 8 from X. laevis and 4 from X. borealis. Magainin-B1, XPF-B1, PGLa-B1 CPF-B2, CPF-B3 and CPF-B4 from X. borealis and XPF-1, XPF-2, and CPF-6 from X. laevis were not detected and CPF-1 and CPF-7 were present in low concentration. The secretions contained caerulein and caerulein-B1 derived from both parents but lacked X. laevis xenopsin and X. borealis caerulein-B2. Skin secretions of hybrids with maternal X. borealis (XBL) contained 14 AMPs comprising 6 from X. borealis and 8 from X. laevis. Magainin-B1, XPF-B1, PGLa-B1, CPF-B2, XPF-1, CPF-5, and CPF-7 were absent and CPF-B3, CPF-B4, CPF-1 and CPF-6 were present only in low concentration. Xenopsin and caerulein were identified in the secretions but caerulein-B2 was absent and caerulein-B1 was present in low concentration. No peptides were identified in secretions of either XLB or XBL hybrids that were not present in the parental species. The data indicate that hybridization between X. laevis and X. borealis results in increased diversity of host-defense peptides in skin secretions but point to extensive AMP gene silencing compared with previously studied female X. laevis×X. muelleri F1 hybrids and no novel peptide expression.