System for Robotically Assisted Percutaneous Procedures with Computed Tomography Guidance
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We present the prototype of an image-guided robotic system for accurate and consistent placement of percutaneous needles in soft-tissue targets under CT guidance inside the gantry of a CT scanner. The couch-mounted system consists of a seven-degrees-of-freedom passive mounting arm, a remote center-of-motion robot, and a motorized needle-insertion device. Single-image-based coregistration of the robot and image space is achieved by stereotactic localization using a miniature version of the BRW head frame built into the radiolucent needle driver. The surgeon plans and controls the intervention in the scanner room on a desktop computer that receives DICOM images from the scanner. The system does not need calibration, employs pure image-based registration, and does not utilize any vendor-specific hardware or software features. In the open air, where there is no needle-tissue interaction, we systematically achieved an accuracy better than 1 mm in hitting targets at 5-8 cm from the fulcrum point. In the phantom, the orientation accuracy was 0.6 degrees, and the distance between the needle tip and the target was 1.04 mm. Experiments indicated that this robotic system is suitable for a variety of percutaneous clinical applications.