Underestimation of Variance of Predicted Health Utilities Derived from Multiattribute Utility Instruments Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • BACKGROUND: Parameter uncertainty in value sets of multiattribute utility-based instruments (MAUIs) has received little attention previously. This false precision leads to underestimation of the uncertainty of the results of cost-effectiveness analyses. The aim of this study is to examine the use of multiple imputation as a method to account for this uncertainty of MAUI scoring algorithms. METHOD: We fitted a Bayesian model with random effects for respondents and health states to the data from the original US EQ-5D-3L valuation study, thereby estimating the uncertainty in the EQ-5D-3L scoring algorithm. We applied these results to EQ-5D-3L data from the Commonwealth Fund (CWF) Survey for Sick Adults ( n = 3958), comparing the standard error of the estimated mean utility in the CWF population using the predictive distribution from the Bayesian mixed-effect model (i.e., incorporating parameter uncertainty in the value set) with the standard error of the estimated mean utilities based on multiple imputation and the standard error using the conventional approach of using MAUI (i.e., ignoring uncertainty in the value set). RESULT: The mean utility in the CWF population based on the predictive distribution of the Bayesian model was 0.827 with a standard error (SE) of 0.011. When utilities were derived using the conventional approach, the estimated mean utility was 0.827 with an SE of 0.003, which is only 25% of the SE based on the full predictive distribution of the mixed-effect model. Using multiple imputation with 20 imputed sets, the mean utility was 0.828 with an SE of 0.011, which is similar to the SE based on the full predictive distribution. CONCLUSION: Ignoring uncertainty of the predicted health utilities derived from MAUIs could lead to substantial underestimation of the variance of mean utilities. Multiple imputation corrects for this underestimation so that the results of cost-effectiveness analyses using MAUIs can report the correct degree of uncertainty.

publication date

  • April 2017