Genetic Polymorphisms in the Long Noncoding RNA MIR2052HG Offer a Pharmacogenomic Basis for the Response of Breast Cancer Patients to Aromatase Inhibitor Therapy
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Genetic risks in breast cancer remain only partly understood. Here, we report the results of a genome-wide association study of germline DNA from 4,658 women, including 252 women experiencing a breast cancer recurrence, who were entered on the MA.27 adjuvant trial comparing the aromatase inhibitors (AI) anastrozole and exemestane. Single-nucleotide polymorphisms (SNP) of top significance were identified in the gene encoding MIR2052HG, a long noncoding RNA of unknown function. Heterozygous or homozygous individuals for variant alleles exhibited a ∼40% or ∼63% decrease, respectively, in the hazard of breast cancer recurrence relative to homozygous wild-type individuals. Functional genomic studies in lymphoblastoid cell lines and ERα-positive breast cancer cell lines showed that expression from MIR2052HG and the ESR1 gene encoding estrogen receptor-α (ERα) was induced by estrogen and AI in a SNP-dependent manner. Variant SNP genotypes exhibited increased ERα binding to estrogen response elements, relative to wild-type genotypes, a pattern that was reversed by AI treatment. Further, variant SNPs were associated with lower expression of MIR2052HG and ERα. RNAi-mediated silencing of MIR2052HG in breast cancer cell lines decreased ERα expression, cell proliferation, and anchorage-independent colony formation. Mechanistic investigations revealed that MIR2052HG sustained ERα levels both by promoting AKT/FOXO3-mediated ESR1 transcription and by limiting ubiquitin-mediated, proteasome-dependent degradation of ERα. Taken together, our results define MIR2052HS as a functionally polymorphic gene that affects risks of breast cancer recurrence in women treated with AI. More broadly, our results offer a pharmacogenomic basis to understand differences in the response of breast cancer patients to AI therapy. Cancer Res; 76(23); 7012-23. ©2016 AACR.
status
publication date
has subject area
published in
Research
keywords
Aromatase Inhibitors
Breast Neoplasms
Cell Line, Tumor
Female
Genome-Wide Association Study
Humans
Middle Aged
Polymorphism, Genetic
RNA, Long Noncoding
Identity
Digital Object Identifier (DOI)
Additional Document Info
start page
end page
volume
issue