Complete description of the interactions of a quadrupolar nucleus with a radiofrequency field. Implications for data fitting Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We present a theory, with experimental tests, that treats exactly the effect of radiofrequency (RF) fields on quadrupolar nuclei, yet retains the symbolic expressions as much as possible. This provides a mathematical model of these interactions that can be easily connected to state-of-the-art optimization methods, so that chemically-important parameters can be extracted from fits to experimental data. Nuclei with spins >1/2 typically experience a Zeeman interaction with the (possibly anisotropic) local static field, a quadrupole interaction and are manipulated with RF fields. Since RF fields are limited by hardware, they seldom dominate the other interactions of these nuclei and so the spectra show unusual dependence on the pulse width used. The theory is tested with (23)Na NMR nutation spectra of a single crystal of sodium nitrate, in which the RF is comparable with the quadrupole coupling and is not necessarily on resonance with any of the transitions. Both the intensity and phase of all three transitions are followed as a function of flip angle. This provides a more rigorous trial than a powder sample where many of the details are averaged out. The formalism is based on a symbolic approach which encompasses all the published results, yet is easily implemented numerically, since no explicit spin operators or their commutators are needed. The classic perturbation results are also easily derived. There are no restrictions or assumptions on the spin of the nucleus or the relative sizes of the interactions, so the results are completely general, going beyond the standard first-order treatments in the literature.

publication date

  • June 2013