Scholarly edition
A New Structural Break Model with Application to Canadian Inflation Forecasting
Abstract
This paper develops an efficient approach to model and forecast time-series data with an unknown number of change-points. Using a conjugate prior and conditional on time-invariant parameters, the predictive density and the posterior distribution of the change-points have closed forms. The conjugate prior is further modeled as hierarchical to exploit the information across regimes. This framework allows breaks in the variance, the regression …
Authors
Maheu JM; Song Y