Journal article
A Further Generalization of the Colourful Carathéodory Theorem
Abstract
Given d+1 sets, or colours, $$\mathbf{S}_{1},\mathbf{S}_{2},\ldots,\mathbf{S}_{d+1}$$ of points in $${\mathbb{R}}^{d}$$, a colourful set is a set $$S \subseteq \bigcup _{i}\mathbf{S}_{i}$$ such that $$\vert S \cap \mathbf{S}_{i}\vert \leq 1$$ for $$i = 1,\ldots,d + 1$$. The convex hull of a colourful set S is called a colourful simplex. Bárány’s colourful Carathéodory theorem asserts that if the origin 0 is contained in the convex hull of Si …
Authors
Meunier F; Deza A
Journal
Fields Institute Communications, Vol. 69, , pp. 179–190
Publisher
Springer Nature
Publication Date
2013
DOI
10.1007/978-3-319-00200-2_11
ISSN
1069-5265