Home
Scholarly Works
Finite Control-Set Model Predictive Control...
Journal article

Finite Control-Set Model Predictive Control (FCS-MPC) of Nested Neutral Point-Clamped (NNPC) Converter

Abstract

This paper proposes a model predictive control (MPC) strategy for a nested neutral point-clamped (NNPC) converter to control output currents and voltages of flying capacitors. The NNPC converter is a four-level converter topology for medium-voltage applications with interesting properties such as operating over a wide range of voltages (2.47.2KV) without the need for connecting power semiconductor in series, high quality output voltage, less number of components compared to other classical four-level topologies. A discrete-time model of the converter is presented and all the control objectives are formulated in terms of the switching states. During each sampling interval, the predicted variables are assessed by the cost function and the best switching state which gives minimum value for the cost function is selected and applied to the converter gating terminals. The performances of the NNPC converter and predictive control scheme are verified through MATLABSimulink simulations and their feasibility is evaluated experimentally.

Authors

Narimani M; Wu B; Yaramasu V; Cheng Z; Zargari NR

Journal

IEEE Transactions on Power Electronics, Vol. 30, No. 12, pp. 7262–7269

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Publication Date

December 1, 2015

DOI

10.1109/tpel.2015.2396033

ISSN

0885-8993

Contact the Experts team