Home
Scholarly Works
Pogorelov type interior 𝐶2 estimate for Hessian...
Journal article

Pogorelov type interior 𝐶2 estimate for Hessian quotient equation and its application

Abstract

Abstract In this paper, we derive a Pogorelov type interior C 2 {C^{2}} estimate for the Hessian quotient equation σ n σ k ⁢ ( D 2 ⁢ u ) = f {\frac{\sigma_{n}}{\sigma_{k}}(D^{2}u)=f} . As an application, we show that convex viscosity solutions are regular for k ≤ n - 3 {k\leq n-3} if u ∈ C 1 , α {u\in C^{1,\alpha}} with α > 1 - 2 n - k {\alpha>1-\frac{2}{n-k}} or u ∈ W 2 , p {u\in W^{2,p}} with p ≥ ( n - 1 ) ( n - k ) 2 {p\geq\frac{(n-1)(n-k)}{2}} . Both exponents are sharp in view of the example in [S. Lu, Interior C 2 C^{2} estimate for Hessian quotient equation in general dimension, Ann. PDE 11 2025, 2, Paper No. 17].

Authors

Lu S; Tsai Y-L

Journal

Journal für die reine und angewandte Mathematik (Crelles Journal), Vol. 2026, No. 831, pp. 155–184

Publisher

De Gruyter

Publication Date

February 1, 2026

DOI

10.1515/crelle-2025-0091

ISSN

0075-4102

Contact the Experts team