Home
Scholarly Works
Quantifying thermal water dissociation in the...
Preprint

Quantifying thermal water dissociation in the dayside photosphere of WASP-121 b using NIRPS

Abstract

The intense stellar irradiation of ultra-hot Jupiters results in some of the most extreme atmospheric environments in the planetary regime. On their daysides, temperatures can be sufficiently high for key atmospheric constituents to thermally dissociate into simpler molecular species and atoms. This dissociation drastically changes the atmospheric opacities and, in turn, critically alters the temperature structure, atmospheric dynamics, and day-night heat transport. To this date, however, simultaneous detections of the dissociating species and their thermally dissociation products in exoplanet atmospheres have remained rare. Here we present the simultaneous detections of H$_2$O and its thermally dissociation product OH on the dayside of the ultra-hot Jupiter WASP-121 b based on high-resolution emission spectroscopy with the recently commissioned Near InfraRed Planet Searcher (NIRPS). We retrieve a photospheric abundance ratio of log$_{10}$(OH/H$_2$O) $= -0.15\pm{0.20}$ indicating that there is about as much OH as H$_2$O at photospheric pressures, which confirms predictions from chemical equilibrium models. We compare the dissociation on WASP-121 b with other ultra-hot Jupiters and show that a trend in agreement with equilibrium models arises. We also discuss an apparent velocity shift of $4.79^{+0.93}_{-0.97} $km s$^{-1}$ in the H$_2$O signal, which is not reproduced by current global circulation models. Finally, in addition to H$_2$O and OH, the NIRPS data reveal evidence of Fe and Mg, from which we infer a Fe/Mg ratio consistent with the solar and host star ratios. Our results demonstrate that NIRPS can be an excellent instrument to obtain simultaneous measurements of refractory and volatile molecular species, paving the way for many future studies on the atmospheric composition, chemistry, and the formation history of close-in exoplanets.

Authors

Bazinet L; Allart R; Benneke BR; Pelletier S; Wardenier JP; Cook NJ; Forveille T; Nielsen LD; Moulla KA; Artigau ÃT

Publication date

August 8, 2025

DOI

10.48550/arxiv.2508.06626

Preprint server

arXiv

Labels

View published work (Non-McMaster Users)

Contact the Experts team