Home
Scholarly Works
NIRPS and TESS reveal a peculiar system around the...
Preprint

NIRPS and TESS reveal a peculiar system around the M dwarf TOI-756: A transiting sub-Neptune and a cold eccentric giant

Abstract

The Near InfraRed Planet Searcher (NIRPS) joined HARPS on the 3.6-m ESO telescope at La Silla Observatory in April 2023, dedicating part of its Guaranteed Time Observations (GTO) program to the radial velocity follow-up of TESS planet candidates to confirm and characterize transiting planets around M dwarfs. We report the first results of this program with the characterization of the TOI-756 system, which consists of TOI-756 b, a transiting sub-Neptune candidate detected by TESS, as well as TOI-756 c, an additional non-transiting planet discovered by NIRPS and HARPS. TOI-756 b is a 1.24-day period sub-Neptune with a radius of 2.81 $\pm$ 0.10 $R_\oplus$ and a mass of 9.8$^{+1.8}_{-1.6}$ $M_\oplus$. TOI-756 c is a cold eccentric (e$_c$ = 0.45 $\pm$ 0.01) giant planet orbiting with a period of 149.6 days around its star with a minimum mass of 4.05 $\pm$ 0.11 $M_\mathrm{jup}$. Additionally, a linear trend of 146$~\mathrm{m\,s}^{-1}\,\mathrm{yr}^{-1}$ is visible in the radial velocities, hinting at a third component, possibly in the planetary or brown dwarf regime. This system is unique in the exoplanet landscape, standing as the first confirmed example of such a planetary architecture around an M dwarf. With a density of 2.42 $\pm$ 0.49 g cm$^{-3}$, the inner planet, TOI-756 b, is a volatile-rich sub-Neptune. Assuming a pure H/He envelope, we inferred an atmospheric mass fraction of 0.023 and a core mass fraction of 0.27, which is well constrained by stellar refractory abundances derived from NIRPS spectra. It falls within the still poorly explored radius cliff and at the lower boundary of the Neptune desert, making it a prime target for a future atmospheric characterization with JWST to improve our understanding of this population.

Authors

Parc LN; Bouchy FO; Cook NJ; Grieves N; Artigau ÃT; L'Heureux A; Doyon R; Messias YS; Baron FDR; Barros SCC

Publication date

October 16, 2025

DOI

10.48550/arxiv.2510.14927

Preprint server

arXiv
View published work (Non-McMaster Users)

Contact the Experts team