Home
Scholarly Works
Chem-NMF: Multi-layer $α$-divergence Non-Negative...
Preprint

Chem-NMF: Multi-layer $α$-divergence Non-Negative Matrix Factorization for Cardiorespiratory Disease Clustering, with Improved Convergence Inspired by Chemical Catalysts and Rigorous Asymptotic Analysis

Abstract

Non-Negative Matrix Factorization (NMF) is an unsupervised learning method offering low-rank representations across various domains such as audio processing, biomedical signal analysis, and image recognition. The incorporation of $α$-divergence in NMF formulations enhances flexibility in optimization, yet extending these methods to multi-layer architectures presents challenges in ensuring convergence. To address this, we introduce a novel approach inspired by the Boltzmann probability of the energy barriers in chemical reactions to theoretically perform convergence analysis. We introduce a novel method, called Chem-NMF, with a bounding factor which stabilizes convergence. To our knowledge, this is the first study to apply a physical chemistry perspective to rigorously analyze the convergence behaviour of the NMF algorithm. We start from mathematically proven asymptotic convergence results and then show how they apply to real data. Experimental results demonstrate that the proposed algorithm improves clustering accuracy by 5.6% $\pm$ 2.7% on biomedical signals and 11.1% $\pm$ 7.2% on face images (mean $\pm$ std).

Authors

Torabi Y; Shirani S; Reilly JP

Publication date

October 8, 2025

DOI

10.48550/arxiv.2510.06632

Preprint server

arXiv
View published work (Non-McMaster Users)

Contact the Experts team