Home
Scholarly Works
Analysis of Annual Maximum Ice-Influenced and...
Journal article

Analysis of Annual Maximum Ice-Influenced and Open-Water Levels at Select Hydrometric Stations on Canadian Rivers

Abstract

River ice is a common feature in most Canadian rivers and streams during the cold season. River channel hydraulics under ice conditions may cause higher water levels at a relatively lower discharge compared to the open-water flood events. Elevated water levels resulting from river ice processes throughout fall freeze-over, mid-winter, and spring break-up are important hydrologic events with diverse morphological, ecological, and socio-economic impacts. This study analyzes the timing of maximum water levels (occurring during freeze-over, spring break-up, and open-water periods) and the typology of maximum ice-related events (at freeze-over, mid-winter, and spring break-up) using data from the Canadian River Ice Database. The study also compares annual maximum water levels during the river ice and open-water periods at selected hydrometric stations from 1966 to 2015, divided into two 25-year windows: 1966–1990 and 1991–2015. A return period classification method was applied to define ice-influenced, open-water, and mixed-regime conditions. The results indicate that the majority of ice-influenced maximum water levels occurred during spring break-up (~79% in 1966–1990 and ~69% in 1991–2015), followed by fall freeze-up (~13% and ~23%) and mid-winter break-up (~8% and ~7%) for the two periods, respectively. Among 15 stations analyzed for 1966–1990 and 42 stations for 1991–2015, the proportion of annual maximum water levels dominated by open-water conditions increased from 47% to 55%, while ice-dominated events decreased from 13% to 12%, and mixed-regime events dropped from 40% to 33%. However, a focused comparison of eight common stations revealed minimal change in the distribution of water level-generating events between the two periods. The findings offer valuable insights into the spatial distribution of maximum water level-generating mechanisms across Canada.

Authors

Dibike Y; de Rham L; Beltaos S; Peters DL; Bonsal B

Journal

Water, Vol. 17, No. 20,

Publisher

MDPI

Publication Date

October 1, 2025

DOI

10.3390/w17202930

ISSN

2073-4441

Contact the Experts team