Home
Scholarly Works
Hydride ion continuum hides absorption signatures...
Preprint

Hydride ion continuum hides absorption signatures in the NIRPS near-infrared transmission spectrum of the ultra-hot gas giant WASP-189b

Abstract

Ultra-hot Jupiters showcase extreme atmospheric conditions, including molecular dissociation, ionisation, and significant day-to-night temperature contrasts. Their close proximity to host stars subjects them to intense stellar irradiation, driving high temperatures where hydride ions (H$^-$) significantly contribute to opacity, potentially obscuring metal features in near-infrared transmission spectra. We investigate the atmosphere of WASP-189b, targeting atomic, ionic, and molecular species (H, He, Fe, Ti, V, Mn, Na, Mg, Ca, Cr, Ni, Y, Ba, Sc, Fe$^+$, Ti$^+$, TiO, H$_2$O, CO, and OH), focusing on (i) the role of H$^-$ as a source of continuum opacity, and (ii) the relative hydride-to-Fe abundance using joint optical and near-infrared data. We present two transits of WASP-189b gathered simultaneously in the optical with HARPS and near-infrared with NIRPS, supported by photometric light curves from EulerCam and ExTrA. Transmission spectra were analysed via cross-correlation to detect absorption features and enhance the signal-to-noise ratio. Atmospheric retrievals quantified relative abundances by fitting overall metallicity and proxies for TiO, H$^-$, and e$^-$. Only atomic iron is detected in HARPS data (S/N ~5.5), but not in NIRPS, likely due to H$^-$ continuum dampening. Retrievals on HARPS-only and HARPS+NIRPS suggest the hydride-to-Fe ratio exceeds equilibrium predictions by about 0.5 dex, hinting at strong hydrogen ionisation. Including NIRPS data helps constrain H$^-$ abundance and set an upper limit on free electron density, unconstrained in HARPS-only data. These results emphasise H$^-$ as a significant continuum opacity source impeding detection of planetary absorption features in WASP-189b's near-infrared transmission spectrum.

Authors

Vaulato V; Pelletier S; Ehrenreich D; Allart R; Cristo E; Steiner M; Dumusque X; Chakraborty H; Lendl M; Srivastava A

Publication date

July 28, 2025

DOI

10.48550/arxiv.2507.21229

Preprint server

arXiv
View published work (Non-McMaster Users)

Contact the Experts team