Home
Scholarly Works
Peaked Stokes waves as solutions of Babenko's...
Preprint

Peaked Stokes waves as solutions of Babenko's equation

Abstract

Babenko's equation describes traveling water waves in holomorphic coordinates. It has been used in the past to obtain properties of Stokes waves with smooth profiles analytically and numerically. We show in the deep-water limit that properties of Stokes waves with peaked profiles can also be recovered from the same Babenko's equation. In order to develop the local analysis of singularities, we rewrite Babenko's equation as a fixed-point problem near the maximal elevation level. As a by-product, our results rule out a corner point singularity in the holomorphic coordinates, which has been obtained in a local version of Babenko's equation.

Authors

Locke S; Pelinovsky DE

Publication date

October 27, 2024

DOI

10.48550/arxiv.2410.20452

Preprint server

arXiv
View published work (Non-McMaster Users)

Contact the Experts team