Home
Scholarly Works
An inaccuracy measure between non-explosive point...
Journal article

An inaccuracy measure between non-explosive point processes with applications to Markov chains

Abstract

Abstract Inaccuracy and information measures based on cumulative residual entropy are quite useful and have received considerable attention in many fields, such as statistics, probability, and reliability theory. In particular, many authors have studied cumulative residual inaccuracy between coherent systems based on system lifetimes. In a previous paper (Bueno and Balakrishnan, Prob. Eng. Inf. Sci. 36 , 2022), we discussed a cumulative residual inaccuracy measure for coherent systems at component level, that is, based on the common, stochastically dependent component lifetimes observed under a non-homogeneous Poisson process. In this paper, using a point process martingale approach, we extend this concept to a cumulative residual inaccuracy measure between non-explosive point processes and then specialize the results to Markov occurrence times. If the processes satisfy the proportional risk hazard process property, then the measure determines the Markov chain uniquely. Several examples are presented, including birth-and-death processes and pure birth process, and then the results are applied to coherent systems at component level subject to Markov failure and repair processes.

Authors

da Costa Bueno V; Balakrishnan N

Journal

Advances in Applied Probability, Vol. 56, No. 2, pp. 735–756

Publisher

Cambridge University Press (CUP)

Publication Date

June 25, 2024

DOI

10.1017/apr.2023.44

ISSN

0001-8678

Contact the Experts team