Unsupervised Learning via Mixtures of Skewed Distributions with Hypercube Contours
Abstract
Mixture models whose components have skewed hypercube contours are developed
via a generalization of the multivariate shifted asymmetric Laplace density.
Specifically, we develop mixtures of multiple scaled shifted asymmetric Laplace
distributions. The component densities have two unique features: they include a
multivariate weight function, and the marginal distributions are also
asymmetric Laplace. We use these mixtures of multiple scaled shifted asymmetric
Laplace distributions for clustering applications, but they could equally well
be used in the supervised or semi-supervised paradigms. The
expectation-maximization algorithm is used for parameter estimation and the
Bayesian information criterion is used for model selection. Simulated and real
data sets are used to illustrate the approach and, in some cases, to visualize
the skewed hypercube structure of the components.