Home
Scholarly Works
Variational Bayes Approximations for Clustering...
Preprint

Variational Bayes Approximations for Clustering via Mixtures of Normal Inverse Gaussian Distributions

Abstract

Parameter estimation for model-based clustering using a finite mixture of normal inverse Gaussian (NIG) distributions is achieved through variational Bayes approximations. Univariate NIG mixtures and multivariate NIG mixtures are considered. The use of variational Bayes approximations here is a substantial departure from the traditional EM approach and alleviates some of the associated computational complexities and uncertainties. Our variational algorithm is applied to simulated and real data. The paper concludes with discussion and suggestions for future work.

Authors

Subedi S; McNicholas PD

Publication date

September 7, 2013

DOI

10.48550/arxiv.1309.1901

Preprint server

arXiv

Labels

View published work (Non-McMaster Users)

Contact the Experts team