Home
Scholarly Works
Improving LandTrendr Forest Disturbance Mapping in...
Journal article

Improving LandTrendr Forest Disturbance Mapping in China Using Multi-Season Observations and Multispectral Indices

Abstract

Forest disturbance detection is of great significance for understanding forest dynamics. The Landsat-based detection of the Trends in Disturbance and Recovery (LandTrendr) algorithm is widely used for forest disturbance mapping. However, there are still two limitations in LandTrendr: first, it only used for summer-composited observations, which may delay the detection of forest disturbances that occurred in autumn and winter by one year, and second, it detected all disturbance types simultaneously using a single spectral index, which may reduce the mapping accuracy for certain forest disturbance types. Here, we modified LandTrendr (mLandTrendr) for forest disturbance mapping in China by using multi-season observations and multispectral indices. Validations using the randomly selected 1957 reference forest disturbance samples across China showed that the overall accuracy (F1 score) of forest disturbance detection in China was improved by 21% with these two modifications. The mLandTrendr can quickly and accurately detect forest disturbance and can be extended to national and global forest disturbance mapping for various forest types.

Authors

Qiu D; Liang Y; Shang R; Chen JM

Journal

Remote Sensing, Vol. 15, No. 9,

Publisher

MDPI

Publication Date

May 1, 2023

DOI

10.3390/rs15092381

ISSN

2072-4292

Contact the Experts team