Journal article
Volume-Preserving Mean Curvature Flow as a Limit of a Nonlocal Ginzburg-Landau Equation
Abstract
We study the asymptotic behavior of radially symmetric solutions of the nonlocal equation $$ \varepsilon\phi_t- \varepsilon\Delta\phi +\frac{1}{\varepsilon}W'(\phi)-\lambda_\varepsilon (t) =0 $$ in a bounded spherically symmetric domain $\Omega\subset\RN$, where $\lambda_\varepsilon (t)=\frac{1}{\varepsilon} \int_{\Omega}{\!\!\!\!\!\!\!\!-} \ W'(\phi)\, dx$, with a Neumann boundary condition. The analysis is based on "energy methods" combined …
Authors
Bronsard L; Stoth B
Journal
SIAM Journal on Mathematical Analysis, Vol. 28, No. 4, pp. 769–807
Publisher
Society for Industrial & Applied Mathematics (SIAM)
Publication Date
7 1997
DOI
10.1137/s0036141094279279
ISSN
0036-1410