Home
Scholarly Works
Some Pitman closeness properties pertinent to...
Journal article

Some Pitman closeness properties pertinent to symmetric populations

Abstract

In this paper, we focus on Pitman closeness probabilities when the estimators are symmetrically distributed about the unknown parameter θ. We first consider two symmetric estimators θˆ1 and θˆ2 and obtain necessary and sufficient conditions for θˆ1 to be Pitman closer to the common median θ than θˆ2. We then establish some properties in the context of estimation under the Pitman closeness criterion. We define Pitman closeness probability which measures the frequency with which an individual order statistic is Pitman closer to θ than some symmetric estimator. We show that, for symmetric populations, the sample median is Pitman closer to the population median than any other independent and symmetrically distributed estimator of θ. Finally, we discuss the use of Pitman closeness probabilities in the determination of an optimal ranked set sampling scheme (denoted by RSS) for the estimation of the population median when the underlying distribution is symmetric. We show that the best RSS scheme from symmetric populations in the sense of Pitman closeness is the median and randomized median RSS for the cases of odd and even sample sizes, respectively.

Authors

Jozani MJ; Balakrishnan N; Davies KF

Journal

Statistics, Vol. 48, No. 6, pp. 1380–1393

Publisher

Taylor & Francis

Publication Date

November 2, 2014

DOI

10.1080/02331888.2013.809721

ISSN

0233-1888

Labels

Contact the Experts team