Home
Scholarly Works
A Vacancy-Disordered, Oxygen-Deficient Perovskite...
Journal article

A Vacancy-Disordered, Oxygen-Deficient Perovskite with Long-Range Magnetic Ordering: Local and Average Structures and Magnetic Properties of Sr2Fe1.5Cr0.5O5

Abstract

The local and average crystal structures and magnetic properties of the oxygen-deficient perovskite Sr(2)Fe(1.5)Cr(0.5)O(5+y) were studied using powder X-ray and neutron diffraction, neutron-pair distribution function analysis, and electron energy-loss spectroscopy. This material crystallizes in the cubic Pm3m space group, with a = 3.94491(14) Å. The oxygen vacancies are distributed randomly throughout the perovskite-type structure, and the average coordination number of the Fe(Cr) sites is 5. Refinement of the neutron diffraction data indicates y ∼ 0.05. This is in discordance with an earlier report on a material with the same nominal composition and cell constant. Electron energy-loss Cr L(2,3)-edge spectroscopy shows that Cr(3+) is present, which is also contrary to previous speculation. Neutron-pair distribution function studies show that a brownmillerite-like model involving ordered vacancies and alternating octahedral and tetrahedral coordination at the metal sites, gives a better description of the local structure out to ∼5 Å. A remarkable phenomenon determined by neutron diffraction in Sr(2)Fe(1.5)Cr(0.5)O(5) is the occurrence of a long-range G-type antiferromagnetic ordering with T(c) ≈ 565 K because cubic oxygen-deficient perovskites with B-site disorder usually do not undergo transitions to magnetically ordered states. The observation of long-range antiferromagnetic order and the T(c) value are in accordance with previous Mössbauer spectroscopic studies.

Authors

Ramezanipour F; Greedan JE; Siewenie J; Donaberger RL; Turner S; Botton GA

Journal

Inorganic Chemistry, Vol. 51, No. 4, pp. 2638–2644

Publisher

American Chemical Society (ACS)

Publication Date

February 20, 2012

DOI

10.1021/ic202590r

ISSN

0020-1669

Contact the Experts team