Journal article
Differential equations over polynomially bounded o-minimal structures
Abstract
We investigate the asymptotic behavior at +∞+\infty of non-oscillatory solutions to differential equations y′=G(t,y),t>ay’=G(t,y), t>a, where G:R1+l→RlG\colon \mathbb {R}^{1+l}\to \mathbb {R}^l is definable in a polynomially bounded o-minimal structure. In particular, we show that the Pfaffian closure of a polynomially bounded o-minimal structure on the real field is levelled.
Authors
Lion J-M; Miller C; Speissegger P
Journal
Proceedings of the American Mathematical Society, Vol. 131, No. 1, pp. 175–183
Publisher
American Mathematical Society (AMS)
Publication Date
May 22, 2002
DOI
10.1090/s0002-9939-02-06509-7
ISSN
0002-9939