Home
Scholarly Works
Phase Transformation Driven by Valence Electron...
Journal article

Phase Transformation Driven by Valence Electron Concentration: Tuning Interslab Bond Distances in Gd5Ga x Ge4 - x

Abstract

X-ray single crystal and powder diffraction studies on the Gd(5)Ga(x)()Ge(4)(-)(x)() system with 0 < or = x < or = 2.2 reveal dependence of interslab T-T dimer distances and crystal structures themselves on valence electron concentration (T is a mixture of Ga and Ge atoms). While the Gd(5)Ga(x)()Ge(4)(-)(x)() phases with 0 < or = x < or = 0.6 and valence electron concentration of 30.4-31 e(-)/formula crystallize with the Sm(5)Ge(4)-type structure, in which all interslab T-T dimers are broken (distances exceeding 3.4 A), the phases with 1 < or = x < or = 2.2 and valence electron concentration of 28.8-30 e-/formula adopt the Pu(5)Rh(4)- or Gd(5)Si(4)-type structures with T-T dimers between the slabs. An orthorhombic Pu(5)Rh(4)-type structure, which is intermediate between the Gd(5)Si(4)- and Sm(5)Ge(4)-type structures, has been identified for the Gd(5)GaGe(3) composition. Tight-binding linear-muffin-tin-orbital calculations show that substitution of three-valent Ga by four-valent Ge leads to larger population of the antibonding states within the dimers and, thus, to dimer stretching and eventually to dimer cleavage.

Authors

Mozharivskyj Y; Choe W; Pecharsky AO; Miller GJ

Journal

Journal of the American Chemical Society, Vol. 125, No. 49, pp. 15183–15190

Publisher

American Chemical Society (ACS)

Publication Date

December 1, 2003

DOI

10.1021/ja037649z

ISSN

0002-7863

Contact the Experts team