Home
Scholarly Works
Torsion in the full orbifold K-theory of abelian...
Journal article

Torsion in the full orbifold K-theory of abelian symplectic quotients

Abstract

Let (M, ω, Φ) be a Hamiltonian T-space and let $${H\subseteq T}$$ be a closed Lie subtorus. Under some technical hypotheses on the moment map Φ, we prove that there is no additive torsion in the integral full orbifold K-theory of the orbifold symplectic quotient [M//H]. Our main technical tool is an extension to the case of moment map level sets the well-known result that components of the moment map of a Hamiltonian T-space M are Morse-Bott functions on M. As first applications, we conclude that a large class of symplectic toric orbifolds, as well as certain S1-quotients of GKM spaces, have integral full orbifold K-theory that is free of additive torsion. Finally, we introduce the notion of semilocally Delzant which allows us to formulate sufficient conditions under which the hypotheses of the main theorem hold. We illustrate our results using low-rank coadjoint orbits of type A and B.

Authors

Goldin R; Harada M; Holm TS

Journal

Geometriae Dedicata, Vol. 157, No. 1, pp. 187–204

Publisher

Springer Nature

Publication Date

April 1, 2012

DOI

10.1007/s10711-011-9604-1

ISSN

0046-5755

Contact the Experts team