Home
Scholarly Works
Simultaneous topology and build orientation...
Journal article

Simultaneous topology and build orientation optimization for minimization of additive manufacturing cost and time

Abstract

Summary The ever‐present demand for increased performance in mechanical systems, and reduced cost and manufacturing time, has led to the adoption of computational design tools and innovative manufacturing methods. One such tool is topology optimization (TO), which often produces designs that are impracticable to manufacture. However, recent developments in additive manufacturing (AM) have made production of such complex designs feasible. Therefore, integration of these technologies has the potential to innovate the design and manufacture of mechanical components. This work presents a novel mathematical methodology for multiobjective minimization of structural compliance and AM cost and time, in simultaneous build orientation and density‐based TO. Component surface area and support volume were implemented in this method as the physical factors influencing AM cost and time. A new methodology was produced to approximate support volume throughout TO with variable build orientation, enabling direct minimization of support volume in the proposed optimization. The methodology allows derivation of sensitivity expressions, thereby permitting the use of efficient gradient‐based optimization solvers. Three numerical examples demonstrated that the proposed methodology can efficiently produce optimum build orientations and topologies, which significantly reduce structural compliance and AM cost and time.

Authors

Fritz K; Kim IY

Journal

International Journal for Numerical Methods in Engineering, Vol. 121, No. 15, pp. 3442–3481

Publisher

Wiley

Publication Date

August 15, 2020

DOI

10.1002/nme.6366

ISSN

0029-5981

Labels

Contact the Experts team