Home
Scholarly Works
Generation and Characterization of...
Journal article

Generation and Characterization of B7-H4/B7S1/B7x-Deficient Mice

Abstract

Members of the B7 family of cosignaling molecules regulate T-cell proliferation and effector functions by engaging cognate receptors on T cells. In vitro and in vivo blockade experiments indicated that B7-H4 (also known as B7S1 or B7x) inhibits proliferation, cytokine production, and cytotoxicity of T cells. B7-H4 binds to an unknown receptor(s) that is expressed on activated T cells. However, whether B7-H4 plays nonredundant immune regulatory roles in vivo has not been tested. We generated B7-H4-deficient mice to investigate the roles of B7-H4 during various immune reactions. Consistent with its inhibitory function in vitro, B7-H4-deficient mice mounted mildly augmented T-helper 1 (Th1) responses and displayed slightly lowered parasite burdens upon Leishmania major infection compared to the wild-type mice. However, the lack of B7-H4 did not affect hypersensitive inflammatory responses in the airway or skin that are induced by either Th1 or Th2 cells. Likewise, B7-H4-deficient mice developed normal cytotoxic T-lymphocyte reactions against viral infection. Thus, B7-H4 plays a negative regulatory role in vivo but the impact of B7-H4 deficiency is minimal. These results suggest that B7-H4 is one of multiple negative cosignaling molecules that collectively provide a fine-tuning mechanism for T-cell-mediated immune responses.

Authors

Suh W-K; Wang S; Duncan GS; Miyazaki Y; Cates E; Walker T; Gajewska BU; Deenick E; Dawicki W; Okada H

Journal

Molecular and Cellular Biology, Vol. 26, No. 17, pp. 6403–6411

Publisher

Taylor & Francis

Publication Date

September 1, 2006

DOI

10.1128/mcb.00755-06

ISSN

0270-7306

Contact the Experts team