Home
Scholarly Works
Pathogenic adaptation of intracellular bacteria by...
Journal article

Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function

Abstract

The acquisition of DNA by horizontal gene transfer enables bacteria to adapt to previously unexploited ecological niches. Although horizontal gene transfer and mutation of protein-coding sequences are well-recognized forms of pathogen evolution, the evolutionary significance of cis-regulatory mutations in creating phenotypic diversity through altered transcriptional outputs is not known. We show the significance of regulatory mutation for pathogen evolution by mapping and then rewiring a cis-regulatory module controlling a gene required for murine typhoid. Acquisition of a binding site for the Salmonella pathogenicity island-2 regulator, SsrB, enabled the srfN gene, ancestral to the Salmonella genus, to play a role in pathoadaptation of S. typhimurium to a host animal. We identified the evolved cis-regulatory module and quantified the fitness gain that this regulatory output accrues for the bacterium using competitive infections of host animals. Our findings highlight a mechanism of pathogen evolution involving regulatory mutation that is selected because of the fitness advantage the new regulatory output provides the incipient clones.

Authors

Osborne SE; Walthers D; Tomljenovic AM; Mulder DT; Silphaduang U; Duong N; Lowden MJ; Wickham ME; Waller RF; Kenney LJ

Journal

Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 10, pp. 3982–3987

Publisher

Proceedings of the National Academy of Sciences

Publication Date

March 10, 2009

DOI

10.1073/pnas.0811669106

ISSN

0027-8424

Contact the Experts team