Home
Scholarly Works
Nuclear reaction studies of 168Tm
Journal article

Nuclear reaction studies of 168Tm

Abstract

The intrinsic structure of 168Tm has been studied using the (3He, d) and (α, t) proton stripping reactions as well as the (d, t) and (3He, α) neutron pick-up reactions. The beams of 24 MeV 3He particles, 25 MeV α-particles and 12 MeV deuterons were obtained from the McMaster tandem Van de Graaff accelerator. The reaction products were analyzed with an Enge-type magnetic spectrograph and detected with photographic emulsions. The spectra have been interpreted in terms of the coupling of an odd proton and an odd neutron, each moving independently in a spheroidal potential, which gives rise to intrinsic two-quasiparticle states with K = ¦Ω1±Ω2¦. The identification of the intrinsic states was made by comparing the experimental cross-section patterns with those predicted with the aid of Coriolis coupling and distorted-wave Born approximation (DWBA) calculations. Rotational bands superimposed on the Kπ = 3+ and Kπ = 4+, {72+ [633]n±12+ [411]p} configurations, the first of which is the ground state, ha been observed in the spectra of all four reactions. New assignments have been made for configurations resulting from coupling the 12− [541], 72+ [404], 54+ [402] and 12− [530] p to the 72+ [633] neutron state. The neutron pick-up measurements confirmed the earlier assignments based on (d, t) reaction studies and suggested tentative assignments for the {12+ [400]n±12+ [411]p} and {32+ [402]n±12+ [411]p}

Authors

Preibisz Z; Burke DG; O'neil RA

Journal

Nuclear Physics A, Vol. 201, No. 3, pp. 486–512

Publisher

Elsevier

Publication Date

February 12, 1973

DOI

10.1016/0375-9474(73)90316-3

ISSN

0375-9474

Contact the Experts team